jueves, 23 de junio de 2011

conecciones de juegos de manometros

capacitor

clacificacion de los refrigerantes

unidades del manometro

Kg/Cm²  -  sistema metrico decimal
Lb/Plg²   -  sistema ingles
Plg de mercurio
MM. de mercurio

filtro desidratador

Un filtro deshidratador por definición, es un dispositivo que
contiene material desecante y material filtrante para remover la humedad y otros contaminantes de un sistema de
refrigeración
Valycontrol, S.A. de C.V. fabrica una gran variedad de
deshidratadores para sistemas de refrigeración doméstica, comercial, industrial y aire acondicionado. 






 .  

REFRIGERANTES R22 R12 R134a




soldadura oxiacetilenica

La soldadura oxiacetilénica es la forma más difundida de soldadura autógena. En este tipo de soldaduras no es necesario aporte de material. Este tipo de soldadura puede realizarse con material de aportación de la misma naturaleza que la del material base (soldadura homogénea) o de diferente material (heterogénea) y también sin aporte de material (soldadura autógena). Si se van a unir dos chapas metálicas, se colocan una junto a la otra. Se procede a calentar rápidamente hasta el punto de fusión solo la unión y por fusión de ambos materiales se produce una costura.
Para lograr una fusión rápida (y evitar que el calor se propague) se utiliza un soplete que combina oxígeno (como comburente) y acetileno (como combustible). La mezcla se produce con un pico con un agujero central del que sale acetileno, rodeado de 4 o más agujeros por donde sale el oxígeno (y por efecto Venturi genera succión en el acetileno). Ambos gases se combinan en una caverna antes de salir al pico, por donde se produce una llama color celeste, muy delgada. Esta llama alcanza una temperatura de 3050ºC.
Se pueden soldar distintos materiales: acero, cobre, latón, aluminio, magnesio, fundiciones y sus respectivas aleaciones.
Tanto el oxígeno como el acetileno se suministran en botellas de acero estirado, a una presión de 15 kp/cm² para el acetileno y de 200 kp/cm² para el oxígeno.
El acetileno además se puede obtener utilizando un gasógeno que hidrata carburo, aunque es una práctica poco aconsejable, dado que hay que resguardar el carburo de un elemento tan abundante como es el agua. En caso de incendio, hay que apagar con polvo químico o CO2, dado que el agua aviva el fuego al generar acetileno

radiacion termica

Se denomina radiación térmica o radiación calorífica a la emitida por un cuerpodebido a su temperatura. Todos los cuerpos con temperatura superior a 0 K emitenradiación electromagnética, siendo su intensidad dependiente de la temperatura y de la longitud de onda considerada. En lo que respecta a la transferencia de calor la radiación relevante es la comprendida en el rango de longitudes de onda de 0,1µm a 100µm, abarcando por tanto parte de la región ultravioleta, la visible y la infrarroja del espectro electromagnético.
La materia en un estado condensado (sólido o líquido) emite un espectro de radiación continuo. La frecuencia de onda emitida por radiación térmica es una densidad de probabilidad que depende solo de la temperatura.

conveccion

La convección es una de las tres formas de transferencia de calor y se caracteriza porque se produce por intermedio de un fluido (aire, agua) que transporta el calor entre zonas con diferentes temperaturas. La convección se produce únicamente por medio de materiales fluidos. Estos, al calentarse, aumentan de volumen y, por lo tanto, su densidaddisminuye y ascienden desplazando el fluido que se encuentra en la parte superior y que está a menor temperatura. Lo que se llama convección en sí, es el transporte de calor por medio de las corrientes ascendente y descendente del fluido.

componentes de la soldadura autogena

tipos de llamas de la soldadura

tipos de soldaduras

La soldadura es un proceso de fabricación en donde se realiza la unión de dos materiales, (generalmente metales o termoplásticos), usualmente logrado a través de la coalescencia (fusión), en la cual las piezas son soldadas fundiendo ambas y agregando un material de relleno fundido (metal o plástico), el cual tiene un punto de fusión menor al de la pieza a soldar, para conseguir un baño de material fundido (el baño de soldadura) que, al enfriarse, se convierte en una unión fija. A veces la presión es usada conjuntamente con el calor, o por sí misma, para producir la soldadura. Esto está en contraste con la soldadura blanda (en inglés soldering) y la soldadura fuerte (en inglés brazing), que implican el derretimiento de un material de bajo punto de fusión entre piezas de trabajo para formar un enlace entre ellos, sin fundir las piezas de trabajo.
Muchas fuentes de energía diferentes pueden ser usadas para la soldadura, incluyendo una llama de gas, un arco eléctrico, un láser, un rayo de electrones, procesos de fricción o ultrasonido. La energía necesaria para formar la unión entre dos piezas de metal generalmente proviene de un arco eléctrico. La energía para soldaduras de fusión o termoplásticos generalmente proviene del contacto directo con una herramienta o un gas caliente.

compresor

diagrama de un refrigerador con escarcha

1.- Cable de alimentación a corriente alterna (clavija).
2.- Control automático de temperatura (termostato ).
3.- Relevador electromagnético de arranque del compresor (relay). 4.- Borne común o de línea del compresor.
5.- Protector térmico de sobrecarga del compresor (Térmico).
6.- Interruptor de presión del foco se instala en el contorno del refrigerador donde sella la puerta.
7.- Foco o lámpara interior del gabinete de 25 watt.

termostato

relay

el relay es un componente básico del compresor el cual tiene un núcleo que al pasar la energía por el lo vota haciendo generar electricidad







interuptor de puerta

el interruptor de puerta es el que abre el circuito deteniendo la electricidad al foco

protector termico

es el cual esta antes de llegar al comun el cual al sentir mucha electricidad corta la corriente escuchandose

timer




Se denomina temporizador al dispositivo mediante el cual podemos regular la conexión o desconexión de un circuito eléctrico durante un tiempo determinado

equipo de soldadura portatil

capacidad del compresor

Los datos de capacidad los facilita el fabricante de cada modelo de compresor para los refrigerantes con los que puede ser utilizado. Estos datos pueden ofrecerse en forma de curvas o tablas, en indica la capacidad en Kcal/ hora, a diversas temperaturas de succión y de descarga. 
Compresores de dos etapas 
Se han desarrollado los compresores de dos etapas para aumentar la eficiencia cuando las temperaturas de evaporación se encuentran en la gama de -35ºC a -62ºC. 
Estos compresores se dividen internamente en baja o alta. Los motores de tres cilindros tienen dos cilindros en la primera etapa y uno en la segunda, mientras que los modelos de seis cilindros tienen cuatro en la primera y dos en la segunda.

capacitor descargado

En la figura que antecede, notamos que las placas del capacitor están descargadas, o sea no hay electrones circulando en ellas, en otras palabras, no existe f.e.m aplicada puesto que el interruptor se encuentra abierto y por lo tanto, no existe una diferencia de potencial entre las placas.
Volviendo a que toda la materia está compuesta de átomos, existe un núcleo en el centro con carga positiva, dicho núcleo está rodeado de electrones girando a su alrededor, recordemos que la carga de los electrones es negativa y se rechazan cuando se aproximan.

En la figura vemos que cada placa tiene sus electrones balanceados o sea, en números iguales, en el dieléctrico los átomos se encuentran en su estado normal, con sus electrones girando es sus órbitas. Decimos entonces que el capacitor tiene sus elementos en equilibrio, dado que no existe una fuerza exterior que altere su estado.

capacitor cargado

Vemos ahora en la figura anterior, que el interruptor se encuentra conectado, completando así el circuito, por lo mismo, se aplica una f.e.m a las placas del capacitor. Es de suponer que la diferencia de potencial pone en movimiento a los electrones circulando una corriente eléctrica por el alambre, la corriente circulante es poca duración.

La corriente de carga del capacitor es de la placa positiva al polo positivo de la batería, por los electrones que pierde dicha placa, en tanto la negativa los acumula. No es de extrañar este comportamiento ya que sabemos que la polaridad positiva atrae electrones libres, en tanto que la negativa los rechaza. Los electrones libres de la placa positiva pasan a la batería y siguen hacia la placa negativa, tratando con esto de volver a la positiva, de donde emigraron.

Se encuentran entonces con el dieléctrico, el cual no permite el paso de estos electrones, dando como resultado al aglutinamiento en la placa negativa.

Es de mencionar el hecho de que las placas tienen una superficie grande con respecto a la separación entre ellas que es muy reducida y por lo mismo los electrones tratan de pasar a la placa positiva, con esto forman un estado de tensión eléctrica, denominado Campo electrostático o bien, líneas de fuerza electrostática. Tomando en cuenta que el dieléctrico es de un material aislante, tiene sus electrones íntimamente ligados a sus átomos, es por esto que no pueden pasar del dieléctrico a la placa positiva, únicamente pueden desviarse hacia ella en sus órbitas de rotación.

Podemos decir que cuanto más alto sea el voltaje aplicado al capacitor, será mayor la tensión que soporta el dieléctrico, es por esto que será mayor la deformación de las órbitas de sus electrones, en su lucha por trasladarse a la placa positiva y alejarse de la negativa.

Si desconectamos la batería, abriendo el interruptor el capacitor queda cargado, o sea, las condiciones de las cuales se explicó anteriormente, siguen vigentes en sus placas. Si hiciéramos un puente entre las 2 placas, inmediatamente los electrones de la placa negativa pasarán a la positiva, formándose una corriente de poda duración en dirección contraria a la primera, esto es, cuando se cargó el capacitor. El resultado de esta acción es que las placas del capacitor vuelven a su estado de equilibro y en el dieléctrico los electrones vuelven a sus órbitas normales de rotación, en otras palabras, el capacitor queda descargado.

como aser un bacio

Muchos de los técnicos en campo no conocen lo perjudicial que puede ser para el sistema y para la calidad del servicio que ellos mismos brindan el no hacer el vacío al sistema de la manera correcta, aunado de que no se tiene la conciencia de las fallas potenciales que se pudiera tener después de la puesta en marcha del equipo, ocasionando que el técnico regrese por una o varias llamadas de garantía por parte del cliente, y en los casos más graves se requerirá el cambio del compresor. Muchos de los técnicos que ejecutan el proceso del vacío lo hacen con otro compresor de refrigeración que está hecho para bombear gas refrigerante o lo hacen con el mismo compresor de refrigeración del sistema y habrá que agregarle que generalmente no se cuenta con el equipo de medición correcto para poder saber si llevamos a nuestro sistema de refrigeración al vacío correcto, según el tipo de lubricante con el que estemos trabajando no teniendo referencia alguna.

ciclo de refrigeracion por metodo de absorcion

El sistema de refrigeración por absorción es un medio de producir frío que, al igual que en el sistema de refrigeración por compresión, aprovecha que ciertas sustancias absorben calor al cambiar de estado líquido a gaseoso. Así como en el sistema de compresión el ciclo se hace mediante un compresor, en el caso de la absorción, el ciclo se basa físicamente en la capacidad que tienen algunas sustancias, como el bromuro de litio, de absorber otra sustancia, tal como el agua, en fase de vapor. Otra posibilidad es emplear el agua como sustancia absorbente (disolvente) y como absorbida (soluto) amoníaco.
Más en detalle, en el ciclo agua-bromuro de litio, el agua (refrigerante), en un circuito a baja presión, se evapora en un intercambiador de calor, llamado evaporador, el cual enfría un fluido secundario, que refrigerará ambientes o cámaras. Acto seguido el vapor es absorbido por el bromuro de litio (absorbente) en el absorbedor, produciendo una solución concentrada. Esta solución pasa al calentador, donde se separandisolvente y soluto por medio de calor procedente de una fuente externa; el agua vuelve al evaporador, y el bromuro al absorbedor para reiniciar el ciclo. Al igual que los sistemas de compresión que utilizan agua en sus procesos, el sistema requiere una torre de enfriamiento para disipar el calor sobrante.

lunes, 20 de junio de 2011

pasos para cargar refrigerante

Indicamos cómo cargar un aire acondicionado doméstico de una forma correcta, dejándolo en un estado óptimo de funcionamiento sin necesidad de báscula. (Sólo para profesionales)
[[Category:En la casa y el jardín]]
== Texto de titular ==
== Pasos ==
#Ante todo hemos de revisar que el equipo esté en buen estado de funcionamiento. El mal estado de mantenimiento hará que las lecturas de presión y temperatura sean erróneas, no permitiéndonos hacer una buena regulación.
#Conectamos las mangueras , la azul al obús de carga del equipo y la amarilla a la botella del refrigerante con todas las válvulas del puente cerradas. Si el equipo tuvo una fuga y perdió una gran parte de su refrigerante, es aconsejable vaciar el circuito y hacer vacío antes de proceder a la carga.
#Procedemos a purgar las mangueras para evitar que el aire de éstas entre en el circuito. Para ello abrimos la botella de refrigerante y dejamos escapar un poco de aire
#  gas desde la unión de la manguera amarilla con el puente. Y de igual forma procedemos con la azul. Al final comprobaremos que las mangueras estén bien apretadas. Damos la vuelta a la botella para estar seguros de cargar por fase líquida.
#Ponemos en funcionamiento el equipo en frío, suponemos que las condiciones ambientales son las típicas del verano. Para cargar en invierno se sigue un procedimiento parecido, que explicaremos más tarde.
#Medimos en la condensadora la temperatura de la tubería de gas (la misma en la que está el obús de carga) y observamos que la temperatura del termómetro es superior a la temperatura de rocío marcada, para ese gas; en el manómetro. Poco a poco vamos abriendo la válvula azul del puente y comprobamos que entra líquido. Dejamos que entre refrigerante unos cuatro o cinco segundos y cerramos. esperamos un par de minutos a que el gas se difunda bien y medimos nuevamente la temperatura. Comprobaremos que la temperatura del manómetro ha subido y la del termómetro ha bajado. Repetimos la carga, con paciencia y cuidado hasta que la temperatura del termómetro se mantenga entre 4ºC y 7ºC por encima de la que nos marca el manómetro. En ese momento, e independientemente de las temperaturas ambientales el equipo tendrá una carga óptima.
#El invierno, con el equipo funcionando en calor, es exactamente igual pero se varía: Sutituimos la manguera azul por la roja, y usamos el manómetro de alta presión, la temperatura se mide en la tubería de líquido(la contraria al obús de carga) y por último la temperatura del termómetro estará por debajo de la del manómetro. Debemos conseguir que la diferencia esté para gases R-22 o R-410A entre 5 y 8 grados, y para el R-407C entre 10 y 13 grados (debido al deslizamiento típico de esta mezcla de gases) no estoy seguro
== Consejos ==
*Hay que ser paciente: Cuando se introduce gas en un equipo, éste tarda unos minutos en recuperar el equilibrio de funcionamiento. En la transición las lecturas no serán fiables.
*Revisar el estado de mantenimiento del equipo: Filtros limpios, buen conexionado frigorífico y eléctrico, todas las carcasas puestas, motor ventilador y correas en buen estado y que la máquina tenga una buena ventilación (comprobar que no haya obstáculos cerca que puedan impedir un buen flujo del aire hacia y desde el equipo).
== Advertencias ==
*Los equipos de aire acondicionado trabajan a altas presiones y pueden producir quemaduras por frío o por calor. Deje las reparaciones a profesionales

codigo de resistencia de colores

La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente.
Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual a la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω). Para su medición en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmímetro. Además, su cantidad recíproca es la conductancia, medida en Siemens.

reciclar gas refrigerante

Debido a que la industria HVAC&R no se puede acabar ya que ocupa una parte fundamental en la economía mundial y cada día tiene más demanda, las compañías han puesto toda la voluntad de sus conocimientos e investigaciones para adaptarse a las exigencias medioambientales de los nuevos tiempos, por tal razón han aplicado considerables modificaciones a sus productos, haciéndolos cada días más amigables con la naturaleza y eficientes energéticamente.
Del mismo modo han  desarrollado tecnologías que posibiliten la continuidad del negocio, una de estas innovaciones es haber logrado el proceso de Recuperación, Reciclaje y Regeneración (Reclaim) de gas refrigerante.
De acuerdo a la guía 3-1990 de ASHRAE, se tienen las siguientes definiciones:
Recuperar: Significa remover el gas refrigerante, en cualquier condición, de un sistema y almacenarlo en un contenedor externo, sin analizarlo ni procesarlo.
Reciclar: Es limpiar el gas refrigerante para volverlo a utilizar, retirándole el aceite o haciéndolo pasar por múltiples dispositivos, tales como filtros deshidratadores, que reducen la humedad, la acidez y la presencia de sólidos. Este término usualmente se aplica a los procedimientos que se pueden implementar en sitio o en el taller de servicio.
Regenerar (Reclaim): Es el reproceso del gas refrigerante hasta que alcance las especificaciones de un gas nuevo. Este proceso utiliza destilación. Se requiere de un análisis químico del gas para determinar que alcanzó las especificaciones. Regenerar implica el uso de procesos y procedimientos que solamente se pueden ejecutar en un equipo reprocesador o en la planta del fabricante.
PROCEDIMIENTO DE RECUPERACIÓN DE GAS
Verter el refrigerante en los tanques recuperadores es un procedimiento arriesgado. Se debe hacer usando el método descrito por el fabricante del refrigerante.
Hay que tener mucho cuidado de:

  • No llenar el cilindro en exceso.
  • No mezclar refrigerantes de diferente graduación ni poner refrigerante de un tipo en un cilindro cuya etiqueta está marcada para otro tipo.
  • Utilizar únicamente cilindros limpios, exentos de toda contaminación de aceite, ácidos, humedad, etc.
  • Verificar visualmente cada cilindro antes de usarlo y asegurarse de que se compruebe regularmente la presión de todos los cilindros.
  • Que el cilindro de recuperación tenga una indicación específica según el país a fin de no confundirlo con un recipiente de refrigerante virgen.
  • Que los cilindros tengan válvulas separadas para líquido y gas, y estén dotados de un dispositivo de alivio de la presión.
Para hacer más rápida la recuperación de gas, hay que mantener frío el tanque recuperador durante todo el proceso. Esto se puede lograr colocándolo en una cubeta con hielo. Mientras más frío esté el tanque, la presión del gas disminuye, pero si el equipo de donde se está recuperando el gas está a una temperatura ambiente, entonces el proceso de recuperado es más lento.
Como procedimiento previo a la recuperación de gas debe revisarse la posición de todas las válvulas y, si aplica, se debe verificar el nivel del aceite del compresor de la recuperadora. Es aconsejable recuperar el refrigerante líquido en un tanque recibidor. Debe recuperarse el líquido primero y después el vapor. Recuperar el refrigerante en fase gaseosa deja aceite en el sistema, minimizando la pérdida del mismo.
Cuando el compresor del sistema en mantenimiento no funciona, hay que entibiar el cárter del compresor. Esto contribuye a liberar el refrigerante atrapado en el aceite.


Recuperación por método Push/Pull

   
Recuperación por método Push/Pull

TECNOLOGÍAS DE RECICLAJE
El reciclaje siempre ha sido parte de las prácticas de servicio en refrigeración. Los diversos métodos varían del bombeo del refrigerante hacia un recipiente, con mínima pérdida, hasta la limpieza del refrigerante quemado mediante filtros secadores. Hay dos tipos de equipos en el mercado: el primero se denomina de paso simple y el otro es de pasos múltiples.
Máquinas recicladoras de paso simple: Estos aparatos procesan el refrigerante a través de filtros secadores y/o mediante destilación. En muchos casos la destilación no conviene y la separación sería mejor. En este método se pasa de una vez del proceso de reciclaje a la máquina y de ésta al cilindro de depósito.
Máquinas de pasos múltiples: Éstas recirculan el refrigerante recuperado muchas veces a través de filtros secadores. Después de cierto tiempo o de cierto número de ciclos, el refrigerante se transfiere a un cilindro de almacenamiento. El tiempo no constituye una medida fiable para determinar en qué grado el refrigerante ha sido bien reacondicionado, debido a que el contenido de humedad puede variar.
TECNOLOGÍAS DE REGENERACIÓN
La regeneración consiste en tratar un refrigerante para llevarlo al grado de pureza correspondiente a las especificaciones del refrigerante virgen, todo ello verificado por un análisis químico. A fin de lograr esto, como la máquina que se utilice debe cumplir con la norma ARI 700-93 (Tabla 3). Todos los fabricantes de refrigerantes así como de equipo recomiendan que el nivel de pureza del refrigerante regenerado sea igual al del refrigerante virgen. El elemento clave de la regeneración es que se efectúe una serie completa de análisis y que el refrigerante sea sometido a reprocesamiento hasta poder satisfacer las especificaciones correspondientes al refrigerante virgen.
Hay muchos tipos diferentes de equipos que pueden lograr el nivel de pureza pero es importante recordar, y esto debe verificarse con los fabricantes del equipo, que el refrigerante regenerado satisfaga las especificaciones correspondientes al refrigerante virgen.
Existen unidades comerciales para utilizar con el R-12, R-22, R-500 y R-502 que están diseñadas para el uso continuo exigido en un procedimiento de recuperación y reciclaje de larga duración.
Unidad de regeneración
Este tipo de sistema puede describirse así:

  • El refrigerante es admitido en el sistema ya sea gaseoso o líquido.
  • El refrigerante entra en una gran cámara única de separación donde la velocidad se reduce radicalmente, esto permite que el gas a alta temperatura se eleve. Durante esta fase, los contaminantes (astillas de cobre, carbón, aceite, ácido y otros) caen al fondo del separador para que se extraigan durante la operación de "salida" del aceite.
  • El gas destilado pasa al condensador enfriado por aire y cambia a líquido.
  • El líquido pasa a la(s) cámara(s) de depósito incorporada(s), donde se le baja la temperatura en aproximadamente unos 56º C (100º F) a una temperatura de subenfriamiento de 3º C a 4º C (38º F a 40º F).
  • Un filtro secador reemplazable en el circuito elimina la humedad mientras continúa el proceso de limpieza para eliminar los contaminantes microscópicos.
  • Si se enfría el refrigerante, la transferencia puede facilitarse cuando se efectúa a cilindros externos que se encuentran a la temperatura ambiente